Product Description
GEXIN NMRV SERIES REDUCER/GEAR BOX
Gexin Electromechanical Co.,Ltd.is a company specializing in the production and processing of asynchronous motors.
Its products mainly include Y, Y2 and IE2 series three phase Asynchronous motors, MS aluminum shell motors, YD series multi-speed motors, YCT series electromagnetic variable-speed motors, YVP variable-frequency and variable speed motors, YEJ electromagnetic braking three-phase asynchronous motors, YC/YCL and YL single-phase series motors, JY single-phase asynchronous motors and MY/ML aluminum shell single-phase asynchronous motors. It has a strong R&D team, and the motor produced by the company is brand new, with national standard stator and rotor and all copper. Product 3c certification, strict technology, each processed part has passed the incoming QC, and the manufacturing process inspection. With rich production experience and advanced production equipment, the company has established long-term cooperative relations with many enterprises with strong strength, reasonable price and high-quality service. Business is sincere, and being the first person in business is our aim.
Product Description
| Type | Worm Gear Speed Reducer/ gearbox |
| Model | WMRV 25/30/40/50/63/75/90/110/130/150/185 |
| Ratio | 7.5,10,15,20,25,30,40,50,60,80,100. |
| Color | Blue(RAL5571)/Silver grey (K9149) Or On Customer Request |
| Material | Housing: Aluminum alloy(size 25~90) / Cast iron(size 110~185) |
| Worm wheel: Aluminum Bronze or Tin Bronze | |
| Worm shaft: 20CrMn Ti | |
| Output Shaft: steel-45# | |
| Packing | Carton, Honey Comb Carton, Wooden Case with wooden pallet |
| Warranty | 1 Year |
| Input Power | 0.09kw,0.18kw,1.1KW,1.5KW,2.2KW,3KW,4KW,5.5KW,7.5KW,11Kw and so on. |
| Usages | Industrial Machine: Food Stuff, Ceramics, CHEMICAL, Packing, Dyeing,Wood working, Glass. |
| IEC Flange | IEC standard flange or on customer request |
| Lubricant | Synthetic oil or worm gear oil |
| Protection Class | IP55 |
Exploded View
Product Parameters
| Motor Flange | The Hole Diameter of Shaft | ||||||||||||||||
| PAM IEC |
N | M | P | E | F | Transmission Ratio | |||||||||||
| 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 100 | |||||||
| NMRV571 | 56B14 | 50 | 65 | 80 | 3 | 10.4 | 9 | – | 9 | – | |||||||
| NMRV030 | 63B5 | 95 | 115 | 140 | 4 | 12.8 | 11 | – | |||||||||
| 63B14 | 60 | 75 | 90 | ||||||||||||||
| 56B5 | 80 | 100 | 120 | 3 | 10.4 | 9 | – | ||||||||||
| 56B14 | 50 | 65 | 80 | ||||||||||||||
| NMRV040 | 71B5 | 110 | 130 | 160 | 5 | 16.3 | 14 | – | |||||||||
| 71B14 | 70 | 85 | 105 | ||||||||||||||
| 63B5 | 95 | 115 | 140 | 4 | 12.8 | 11 | |||||||||||
| 63B14 | 60 | 75 | 90 | ||||||||||||||
| 56B5 | 80 | 100 | 120 | 3 | 10.4 | – | 9 | ||||||||||
| NMRV050 | 80B5 | 130 | 165 | 200 | 6 | 21.8 | 19 | – | |||||||||
| 80B14 | 80 | 100 | 120 | ||||||||||||||
| 71B5 | 110 | 130 | 160 | 5 | 16.3 | 14 | – | ||||||||||
| 71B14 | 70 | 85 | 105 | ||||||||||||||
| 63B5 | 95 | 115 | 140 | 4 | 12.8 | – | 11 | ||||||||||
| NMRV063 | 90B5 | 130 | 165 | 200 | 8 | 27.3 | 24 | – | |||||||||
| 90B14 | 95 | 115 | 140 | ||||||||||||||
| 80B5 | 130 | 165 | 200 | 6 | 21.8 | 19 | – | ||||||||||
| 80B14 | 80 | 100 | 120 | ||||||||||||||
| 71B5 | 110 | 130 | 160 | 5 | 16.3 | – | 14 | ||||||||||
| 71B14 | 70 | 85 | 105 | ||||||||||||||
| NMRV075 | 100/112B5 | 180 | 215 | 250 | 8 | 31.3 | 28 | – | |||||||||
| 100/112B14 | 110 | 130 | 160 | ||||||||||||||
| 90B5 | 130 | 165 | 200 | 8 | 27.3 | 24 | – | ||||||||||
| 90B14 | 95 | 115 | 140 | ||||||||||||||
| 80B5 | 130 | 165 | 200 | 6 | 21.8 | – | 19 | ||||||||||
| 80B14 | 80 | 100 | 120 | ||||||||||||||
| NMRV090 | 100/112B5 | 180 | 215 | 250 | 8 | 31.3 | 28 | – | |||||||||
| 100/112B14 | 110 | 130 | 160 | ||||||||||||||
| 90B5 | 130 | 165 | 200 | 8 | 27.3 | 24 | – | ||||||||||
| 90B14 | 95 | 115 | 140 | ||||||||||||||
| 80B5 | 130 | 165 | 200 | 6 | 21.8 | – | 19 | ||||||||||
| 80B14 | 80 | 100 | 120 | ||||||||||||||
| NMRV110 | 132B5 | 230 | 265 | 300 | 10 | 41.1 | 38 | – | |||||||||
| 100/112B5 | 180 | 215 | 250 | 8 | 31.3 | 28 | – | ||||||||||
| 90B5 | 130 | 165 | 200 | 8 | 27.3 | – | 24 | ||||||||||
| NMRV130 | 132B5 | 230 | 265 | 300 | 10 | 41.1 | 38 | – | |||||||||
| 100/112B5 | 180 | 215 | 250 | 8 | 31.3 | – | 28 | ||||||||||
| NMRV150 | 160B5 | 250 | 300 | 350 | 12 | 45.3 | 42 | ||||||||||
| 132B5 | 230 | 265 | 300 | 10 | 41.3 | – | 38 | – | |||||||||
| 100/112B5 | 180 | 215 | 250 | 8 | 31.3 | – | 28 | ||||||||||
Installation Instructions
Detailed Photos
Advantage
* 100% Copper wire,100% Power Output;
* 100% test after each process and final test before packing.
* 20Years Manufacture Experience;
* Single Phase Motors are with centrifugal switch ,which are suitable for high start torque application like air compressor,fans,pumps and so on;
* Energy saving;
* Superior Life;
* Quiet Operation;
* Easy maintance;
* Be made of selected quality materals.latest design in entirety;
*OEM Service
*CE/ISO Approved
*20-30days lead time
Quality Assurance:
1 year quality warranty and fast after-sales service.
Gexin Electromechanical Co., Ltd.,
We have 150 employees, an annual output value of $1800w and an area of 26000sqm.
Foreign Exhibition
FAQ
1: Are you a factory or just a trading company?
A1: Manufacturer,and we focus on the development and production of electric motors for more than 20 years.
Q2: Is customized service available?
A2: Of course, OEM & ODM both are available.
Q3: How can I get the quotation?
A3: Leave us message with your purchase requirements and we will reply you within 1 hour on working time. And you may contact us directly by Trade Manager.
Q4:Can I buy 1 as sample?
A4: Yes, of course.
Q5: How about your quality control?
A5: Our professional QC will check the quality during the production and do the quality test before shipment.
Q6: What is your payment term?
A6: 30% T/T in advance, 70% balance when receiving B/L copy Or 100% irrevocable L/C at sight.
Q7: What is your lead time?
A7: About 20-30 days after receiving advance deposit or original L/C.
Q8: What certificates do you have?
A8: We have CE, ISO. And we can apply for specific certificate for different country such as SONCAP for Nigeria, COI for Iran, SASO for Saudi Arabia, etc.
Q9: What warranty do you provide?
A9: One year, during the guarantee period, we will supply freely of the easy damaged parts for the possible problems except for the incorrect operation. After expiration, we supply cost spare parts for alternator maintenance.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

How does the choice of winch drives affect the overall performance and reliability of lifting operations?
The choice of winch drives has a significant impact on the overall performance and reliability of lifting operations. Here’s a detailed explanation of how the choice of winch drives affects performance and reliability:
- Lifting Capacity:
The choice of winch drives directly affects the lifting capacity of the system. Different winch drives have varying load capacities, and selecting an appropriate winch drive that matches the intended lifting requirements is crucial. Choosing a winch drive with insufficient lifting capacity can result in overloading, which can lead to equipment failure, safety hazards, and potential damage to the load or surrounding structures. On the other hand, selecting a winch drive with a higher lifting capacity than necessary can lead to unnecessary costs and inefficient operation. Therefore, selecting the right winch drive with the appropriate lifting capacity is essential for optimal performance and reliability.
- Speed and Control:
The choice of winch drives also affects the speed and control of lifting operations. Different winch drives offer varying speed ranges and control options. High-quality winch drives provide smooth and precise speed control, allowing for accurate positioning and delicate handling of loads. The choice of winch drives with suitable speed and control capabilities ensures efficient and controlled lifting operations, reducing the risk of accidents, damage to the load, or strain on the lifting equipment. Additionally, winch drives with advanced control features, such as programmable logic controllers (PLCs) or electronic control systems, enhance operational reliability and performance by enabling synchronized movements and automation.
- Durability and Reliability:
The choice of winch drives significantly impacts the durability and reliability of lifting operations. High-quality winch drives constructed with robust materials and designed for heavy-duty applications offer enhanced durability and reliability. They can withstand the demanding conditions and stress associated with lifting operations, minimizing the risk of breakdowns, malfunctions, or premature wear. Choosing winch drives from reputable manufacturers known for their quality and reliability ensures long-term performance and reduces the need for frequent maintenance or replacement, enhancing the overall reliability of the lifting operations.
- Safety Features:
Winch drives come with various safety features that contribute to the overall performance and reliability of lifting operations. These safety features include overload protection systems, emergency stop controls, limit switches, and fail-safe mechanisms. The choice of winch drives with comprehensive safety features enhances the safety of lifting operations by preventing overloading, safeguarding against equipment failures, and providing emergency shutdown options in critical situations. Properly selecting winch drives with appropriate safety features ensures compliance with safety regulations, reduces the risk of accidents, and enhances the reliability of lifting operations.
- Compatibility and Integration:
Choosing winch drives that are compatible with the overall lifting system and easily integrable with other components is crucial for optimal performance and reliability. Compatibility issues can arise if the selected winch drive does not match the mechanical requirements, power supply, or control interfaces of the lifting system. Incompatibility can lead to operational inefficiencies, increased maintenance needs, or even system failures. Therefore, careful consideration of the compatibility and integration aspects when choosing winch drives ensures seamless integration, smooth operation, and enhanced reliability of lifting operations.
In summary, the choice of winch drives significantly impacts the overall performance and reliability of lifting operations. Factors such as lifting capacity, speed and control capabilities, durability and reliability, safety features, and compatibility with the overall system should be carefully considered when selecting winch drives. By choosing the right winch drives that meet the specific requirements of the lifting operations, operators can achieve optimal performance, ensure safe and efficient lifting, and enhance the overall reliability of the operations.

How does the design of winch drives impact their performance in different environments?
The design of winch drives plays a critical role in determining their performance in different environments. Various design factors influence the reliability, efficiency, and adaptability of winch drives to specific operating conditions. Here’s a detailed explanation of how the design of winch drives impacts their performance:
- Load Capacity and Power:
The design of winch drives directly affects their load capacity and power capabilities. Factors such as motor size, gear ratio, and drum diameter determine the maximum load capacity a winch drive can handle. The power output of the motor and the mechanical advantage provided by the gear system impact the winch drive’s ability to lift or pull heavy loads effectively. A well-designed winch drive with appropriate load capacity and power ensures optimal performance in different environments.
- Speed and Control:
The design of winch drives influences their speed and control characteristics. The gear ratio and motor specifications determine the speed at which the winch drive can operate. Additionally, the presence of a variable speed control mechanism allows for precise and controlled movement of loads. The design should strike a balance between speed and control, depending on the specific application and operational requirements in different environments.
- Drive System:
Winch drives can utilize different drive systems, such as electric, hydraulic, or pneumatic. The design of the drive system impacts the performance of the winch drive in different environments. Electric winch drives are commonly used due to their ease of use, precise control, and suitability for various applications. Hydraulic winch drives offer high power output and are often preferred in heavy-duty applications. Pneumatic winch drives are suitable for environments where electricity or hydraulics are not readily available. The design should align with the specific requirements and constraints of the environment in which the winch drive will be used.
- Enclosure and Protection:
The design of the winch drive enclosure and protection features significantly impacts its performance in different environments. Winch drives used in outdoor or harsh environments should have robust enclosures that provide protection against dust, moisture, and other contaminants. Sealed or weatherproof enclosures prevent damage to internal components and ensure reliable operation. Additionally, features such as thermal protection and overload protection are designed to safeguard the winch drive from overheating or excessive strain, enhancing its performance and longevity.
- Mounting and Installation:
The design of winch drives should consider the ease of mounting and installation. Mounting options such as bolt-on, weld-on, or integrated mounting plates offer flexibility for different installation scenarios. The design should also take into account the space constraints and mounting requirements of the specific environment. Easy and secure installation ensures proper alignment, stability, and efficient operation of the winch drive.
- Control and Safety Features:
The design of winch drives includes control and safety features that impact their performance in different environments. Control systems can range from simple push-button controls to advanced remote controls or integrated control panels. The design should provide intuitive and user-friendly control interfaces for efficient operation. Safety features such as emergency stop mechanisms, load limiters, and overload protection are crucial to prevent accidents and ensure safe operation in various environments. The design should prioritize the incorporation of appropriate safety features based on the specific application and environmental conditions.
By considering these design factors, winch drives can be optimized for performance, reliability, and safety in different environments. A well-designed winch drive that aligns with the specific requirements of the environment will deliver efficient and effective lifting or pulling capabilities while ensuring long-term durability and functionality.

Can you explain the key components and functions of a winch drive mechanism?
A winch drive mechanism consists of several key components that work together to provide controlled pulling or lifting capabilities. Each component has a specific function that contributes to the overall operation of the winch drive. Here’s a detailed explanation of the key components and their functions:
- Power Source:
The power source is the component that provides the energy to drive the winch mechanism. It can be an electric motor, hydraulic system, or even a manual crank. Electric motors are commonly used in modern winches due to their efficiency, controllability, and ease of operation. Hydraulic systems are often employed in heavy-duty winches that require high pulling capacities. Manual winches, operated by hand-cranking, are typically used in lighter applications or as backup systems. The power source converts the input energy into rotational motion, which drives the other components of the winch mechanism.
- Gearbox or Transmission:
The gearbox or transmission is responsible for controlling the speed and torque output of the winch drive. It consists of a series of gears arranged in specific ratios. The gears are engaged or disengaged to achieve the desired speed and torque requirements for the application. The gearbox allows the winch drive to provide both high pulling power or low-speed precision, depending on the needs of the task. It also helps distribute the load evenly across the gear teeth, ensuring smooth and reliable operation.
- Drum or Spool:
The drum or spool is a cylindrical component around which the cable or rope is wound. It is typically made of steel or other durable materials capable of withstanding high tension forces. The drum is connected to the rotational output of the gearbox or transmission. As the gearbox rotates, the drum winds or unwinds the cable, depending on the direction of rotation. The diameter of the drum determines the pulling or lifting capacity of the winch drive. A larger drum diameter allows for a greater length of cable to be wound, resulting in increased pulling power.
- Cable or Rope:
The cable or rope is the element that connects the winch drive to the load being pulled or lifted. It is typically made of steel wire or synthetic materials with high tensile strength. The cable is wound around the drum and extends out to the anchor point or attachment point of the load. It acts as the link between the winch drive and the object being moved. The choice of cable or rope depends on the specific application requirements, such as the weight of the load, environmental conditions, and desired flexibility.
- Braking System:
A braking system is an essential component of a winch drive mechanism to ensure safe and controlled operation. It prevents the cable or rope from unwinding uncontrollably when the winch is not actively pulling or lifting a load. The braking system can be mechanical or hydraulic, and it engages automatically when the winch motor is not applying power. It provides a secure hold and prevents the load from slipping or releasing unintentionally. The braking system also helps control the descent of the load during lowering operations, preventing sudden drops or free-falls.
- Control System:
The control system allows the operator to manage the operation of the winch drive. It typically includes controls such as switches, buttons, or levers that enable the activation, direction, and speed control of the winch. The control system can be integrated into the winch housing or provided as a separate control unit. In modern winches, electronic control systems may offer additional features such as remote operation, load monitoring, and safety interlocks. The control system ensures precise and safe operation, allowing the operator to adjust the winch drive according to the specific requirements of the task.
In summary, a winch drive mechanism consists of key components such as the power source, gearbox or transmission, drum or spool, cable or rope, braking system, and control system. The power source provides the energy to drive the winch, while the gearbox controls the speed and torque output. The drum or spool winds or unwinds the cable, which connects the winch drive to the load. The braking system ensures safe and controlled operation, and the control system allows the operator to manage the winch’s performance. Together, these components enable winch drives to provide controlled pulling or lifting capabilities in a wide range of applications.
<img src="https://img.hzpt.com/img/gearbox/gearbox-l1.webp" alt="China OEM Nmrv High Torque AC Electric Induction Motor Worm Gear Reducer Compact for Cranes “><img src="https://img.hzpt.com/img/gearbox/gearbox-l2.webp" alt="China OEM Nmrv High Torque AC Electric Induction Motor Worm Gear Reducer Compact for Cranes “>
editor by Dream 2024-10-16
China Planetary Gearbox Planetary Gearbox CNC Gear Box Stepping Motor Planetary Gearbox Motor NEMA 23 compact planetary gearbox
Solution Description
GPBR042-L1 Appropriate Angle Substantial Precision Planetary Gearbox,ratio 3:1-512:one
one.Sending the purchase code like GPB042-L1
two.Provide Motor design / drawing and output torque
Planetary Reducer
As a expert speed reducer manufacturer, GIGAGER is specialized in producing planetary gearhead reducer for far more than ten a long time. All of GIGAGER planetary gearboxes are made with integral framework with huge span of the entrance and rear bearings distributed inside of the box body, forming a secure built-in structure to make certain transferring the greatest torque in the most compact kind.
1. What is the Planetary Reducer?
Planetary equipment method is a variety of epicyclic equipment system utilised in exact and high-performance transmissions.
We have abundant of expertise in production planetary gearbox and equipment elements such as sunlight gear, planet carrier, and ring equipment in China. We utilize the most superior gear and technological innovation in manufacturing our planetary equipment sets.
We supply a broad selection of planetary gearbox for your gear reduction tasks.
2. What is the Solution Functions?
• Lower backlash to satisfy users’ precision transmission requirement.
• High performance of output make sure the superb doing work performance of user’s tools.
• Large high quality with totally free maintenance.
• Helical transmission, much more steady, far more loading
• Special developed integral structure tends to make bigger radial and axial load
• Reduced sound and modest volume
• Multiple product and gear ratio choices
| To Be Negotiated | 1 Piece (Min. Order) |
###
| Feature: | High Speed |
|---|---|
| Step: | Multi-Step |
| Layout: | Coaxial |
| Openness: | Open |
| Installation: | Horizontal |
| Transmission Form: | Gear |
###
| Customization: |
Available
|
|---|
| To Be Negotiated | 1 Piece (Min. Order) |
###
| Feature: | High Speed |
|---|---|
| Step: | Multi-Step |
| Layout: | Coaxial |
| Openness: | Open |
| Installation: | Horizontal |
| Transmission Form: | Gear |
###
| Customization: |
Available
|
|---|
Benefits of a Planetary Gearbox With Output Shaft
The output shaft of a Planetary Gearbox connects to the driven wheels, while the input shaft comes from the engine. These gears are interlinked and create a wide range of gear reductions, which are necessary to get a vehicle rolling comfortably. Gear reductions are the place where the various “gears” are located. Here are some examples. They can help you determine what you need for your vehicle. You might also want to learn about planetary gears.
Planetary gearboxes
Modern cars are most likely equipped with planetary gearboxes. If you’re unsure if your vehicle uses planetary gears, you should first consult your car’s owner’s manual. If not, contact your dealership’s service department for more information. Otherwise, you can do a quick search on the internet to find out whether your car has a planetary gearbox. These gearboxes are generally more complex than ordinary gears. Additionally, they are equipped with more parts and require lubrication.
In addition to their low noise levels, planetary gearboxes are also remarkably efficient at transmission. These features make them ideal for applications requiring high torque and small footprints. Unfortunately, there are many different types of planetary gearboxes on the market, making it difficult to find the right one. The following article will give you some guidelines to help you choose the right planetary gearbox for your needs. Let’s take a look!
Planetary gears
A planetary gearbox has two main components: the sun gear (also known as the central or input) and the planet gears (also known as outer or peripheral). These gears are connected together by a carrier to the output shaft of the machine. In some applications, it is necessary to use a planetary gearbox with lubrication to prevent wear and tear. A planetary gearbox also has a small ring gear that helps hold the planet gears together.
The main advantage of a planetary gearbox is that it uses several teeth that engage at once, allowing for high-speed reduction with a small number of gears. Because the gears are relatively small, they have lower inertia than their larger counterparts. Planetary gearboxes are compact, which makes them popular for space-constrained applications. Because of their compact size and efficiency, planetary gearboxes are also commonly used in motor vehicles.
Planetary gearboxes with output shaft
For high-speed, dynamic applications, planetary gearbox units with output shaft provide the optimal solution. Thanks to their low inertia, these gearheads deliver superior performance in many industrial applications. Additionally, their wide range of variants allows users to select the perfect product for their application. This article examines some of the key benefits of planetary gearboxes with output shaft. Read on to learn more.
The planetary gearbox has two major components: a sun gear and planet gears. The sun gear is usually the input gear, while the planet gears are located at the outer edges of the system casing. Planet gears are held together by a carrier that is connected to the output shaft. Before choosing a particular gearbox for your application, make sure that you check the specific requirements and the environment to which the unit will be subjected.
A planetary gearbox has less stages of gears, and thus lower backlash compared to spur gearboxes. Backlash is lost motion that occurs when the teeth of the gears are out of perfect alignment. This problem is common in all gears, but is significantly less in planetary gearboxes. As such, planetary gearboxes are more efficient. They can also be customized according to the specific engine model and motor flange.
Planetary gearboxes with carrier
A planetary gearbox is a type of gearbox with three or more stages. They have a sun gear, which is usually the input gear, and planet gears, also called the outer gears. The carrier that connects the planet gears to the output shaft is called a ring gear. A planetary gearbox is generally designed to meet specific application and environmental requirements, but there are some factors to consider when choosing one.
The compact footprint of planetary gear sets results in high heat dissipation. This can be a problem in applications with sustained performance or high speeds. As a result, planetary gear sets often include lubricants, which present a cooling effect while also reducing noise and vibration. Some planetary gears even feature a carrier to make the installation process easier. Here are some things to keep in mind when choosing a planetary gear set.
Planetary gearboxes with carrier have several advantages over other types of gearboxes. Unlike conventional gearboxes, planetary gears have a common central shaft, and the tangential forces between the gears cancel out at the center of the ring gear. Because of this, planetary gearboxes are commonly used in input/output applications, and their compact size allows for a wide range of gear reductions. These gears can also produce higher torque density.
Planetary gearboxes with traction
Planetary gears are similar to the planetary system, in that each pinion rotates around a sun gear. The output of the planetary gear unit is lower than the drive rotation speed, but the torque is higher. As the number of planet gear wheels increases, so does the torque. Planetary gear systems contain three to four planet gears, and each is in constant mesh with the others. Power applied to any one member rotates the entire assembly.
Typical applications for planetary gear sets include high-precision motion control. In these applications, high torque, torsional stiffness, and low backlash are required. Planetary gear sets are also ideal for motors with higher speeds. A number of factors contribute to the reliability of these devices. The low backlash and large torque capacity of a planetary gear motor allow them to be used in a wide range of applications.
Planetary gearboxes with electric motors
If you’re in the market for a new gearbox, you may have already heard about planetary gearboxes. The planetary gearbox is a high-efficiency, low-noise gearbox. CZPT manufactures high-torque planetary gearboxes with low backlash. They also make economy planetary gearboxes for lower loads. However, with so many different types available, choosing the right one for your needs can be challenging.
These planetary gearboxes are a compact alternative to conventional pinion-and-gear reducers. They offer high-speed reduction and high torque transfer, and are often used for space-constrained applications. But before you can understand how they work, you’ll need to understand a little about their construction. There are a few things to look for that you may not have noticed before.
The most common type of planetary gearbox is a PM81/LN. It features a set of DC brush motors with diameter 77mm, a stator, and two or more outer gears. Each of these gears is connected to an output shaft through a carrier. They can also be used with brakes, encoders, or a clutch. A planetary gearbox is one of the most reliable gearbox types on the market.
Planetary gearboxes with hydraulic motors
A planetary gearbox is a combination of two gears, the sun and the planets. The sun gear rotates at high speed, while the planets roll around and orbit around the ring gear. The output shaft has the same direction of rotation as the input shaft. The benefits of a planetary gearbox include high reduction ratios, efficiency, space-saving compactness, and higher overload capacity. These gears are also more stable and compact, and they do not suffer from self-locking properties.
Planetary gearboxes are a highly efficient way to power hydraulic lifts. They can be input via electric, hydraulic, or air motors. The drive arrangement can be mounted on a bare shaft, splined shaft, or a parallel keyed input shaft. Depending on the application, bespoke gearboxes can be manufactured with a variety of features and functions.
Planetary gearboxes with combustion engines
There are many different applications of planetary gear sets. The most common is the distribution of power between two wheels in a car’s drive axle. Four-wheel drives use two axle differentials, which are further augmented by a centre differential. Hybrid electric vehicles use summation gearboxes to distribute power from the combustion engine to the wheels and to an electric motor. Planetary gear sets also combine the two different types of motors to form one hybrid vehicle.
To understand how planetary gear sets work, it is important to understand the underlying mechanical principles. For example, Fig. 4.6 shows a stick diagram illustrating two planetary gear sets connected by a lever. The two levers are the same length, so the system is analogous to a single lever. When calculating the torque, it is essential to consider the lever diagram. Similarly, if two gear sets are connected by vertical links, the horizontal links must be horizontal.


editor by czh 2023-01-18